Skip to content
SuperMoney logo
SuperMoney logo

Variance in Statistics: Definition, Formula, and Examples

Last updated 06/26/2023 by

Andrew Latham

Edited by

Fact checked by

Summary:
The concept of variance in statistics measures the spread or dispersion of data points within a dataset. By understanding variance, you can gain valuable insights into data distribution, compare datasets, assess data reliability, and make informed decisions based on statistical analysis.
In the field of statistics, variance is a fundamental concept that helps us understand the spread or dispersion of data points within a dataset. It provides a measure of how much the values in a dataset deviate from the mean. Variance is widely used in various statistical analyses and plays a crucial role in making informed decisions based on data. In this article, we will delve into the definition, formula, and example of variance, shedding light on its significance in statistical analysis.

Understanding variance

Variance is a statistical measure that quantifies the variability or spread of a set of data points. It indicates how far each value in the dataset is from the mean and provides valuable insights into the distribution of data. By examining variance, we can assess the degree of dispersion and understand the overall behavior of the dataset.

Variance formula

The formula for calculating variance depends on whether we are dealing with a population or a sample dataset.
Population variance:
If we have access to data for an entire population, we can use the following formula to calculate population variance:
Variance (σ²) = Σ((X – μ)²) / N
where:
Σ represents the sum of
X is an individual data point in the population
μ denotes the population means
N is the total number of data points in the population

Sample Variance:

In scenarios where we only have access to a sample dataset, we use a slightly different formula to estimate the population variance. The formula for sample variance is as follows:
Variance (s²) = Σ((X – x̄)²) / (n – 1)
where:
Σ represents the sum of
X is an individual data point in the sample
represents the sample mean
n is the total number of data points in the sample

Example:

Let’s consider a simple example to illustrate the calculation of a variance. Suppose we have the following dataset representing the daily stock prices of a company over a week:
[10, 12, 11, 10, 13, 15, 14]

Step 1: Calculate the mean (x̄):

x̄ = (10 + 12 + 11 + 10 + 13 + 15 + 14) / 7 = 85 / 7 ≈ 12.14

Step 2: Calculate the deviations (X – x̄):

Deviation 1 = 10 – 12.14 ≈ -2.14
Deviation 2 = 12 – 12.14 ≈ -0.14
Deviation 3 = 11 – 12.14 ≈ -1.14
Deviation 4 = 10 – 12.14 ≈ -2.14
Deviation 5 = 13 – 12.14 ≈ 0.86
Deviation 6 = 15 – 12.14 ≈ 2.86
Deviation 7 = 14 – 12.14 ≈ 1.86

Step 3: Square the deviations ((X – x̄)²):

Squared Deviation 1 ≈ (-2.14)² = 4.5796
Squared Deviation 2 ≈ (-0.14)² = 0.0196
Squared Deviation 3 ≈ (-1.14)² = 1.2996
Squared Deviation 4 ≈ (-2.14)² = 4.5796
Squared Deviation 5 ≈ 0.86² = 0.7396
Squared Deviation 6 ≈ 2.86² = 8.1796
Squared Deviation 7 ≈ 1.86² = 3.4596

Step 4: Calculate the sum of squared deviations (Σ((X – x̄)²)):

Σ((X – x̄)²) ≈ 4.5796 + 0.0196 + 1.2996 + 4.5796 + 0.7396 + 8.1796 + 3.4596 ≈ 22.8572

Step 5: Divide the sum of squared deviations by (n – 1):

Variance (s²) ≈ 22.8572 / (7 – 1) = 22.8572 / 6 ≈ 3.8095

Significance of Variance

Variance is a crucial statistical metric that offers several advantages in data analysis, including
Understanding data dispersion: Variance helps us comprehend the spread or dispersion of values in a dataset, providing insights into the distribution of data points.
Comparing datasets: By comparing the variances of different datasets, we can determine which dataset has more variability or spread.
Assessing data reliability: Variance is utilized in various statistical tests to assess the reliability of data and draw meaningful conclusions.
Decision-making: Understanding variance allows us to make informed decisions based on data analysis, enabling us to assess the risks and potential outcomes associated with different scenarios.
Variance is a fundamental concept in statistics that measures the dispersion or spread of data points within a dataset. Quantifying the variability, it helps us analyze and interpret data, enabling us to make informed decisions. Understanding the definition, formula, and example of variance provides a solid foundation for statistical analysis and empowers us to extract valuable insights from datasets.

Frequently Asked Questions

What is variance in statistics?

Variance in statistics refers to a measure of how much the values in a dataset deviate from the mean. It provides insight into the spread or dispersion of data points within the dataset, helping us understand the variability of the data.

Why is variance important in statistics?

Variance plays a crucial role in statistical analysis. It helps us understand the dispersion of data points, compare datasets, assess data reliability, and make informed decisions. A variance allows us to quantify and analyze the spread of values, providing valuable insights into the behavior and distribution of the data.

How does variance relate to standard deviation?

Variance and standard deviation are closely related measures. Standard deviation is simply the square root of variance. While variance provides an absolute measure of dispersion, standard deviation expresses the dispersion in the same units as the original data, making it more intuitive and easier to interpret.

Can variance be negative?

No, variance cannot be negative. By squaring the deviations from the mean, the variance always yields non-negative values. A variance of zero indicates that all the values in the dataset are the same, while larger variances suggest greater variability or spread among the data points.

Key takeaways

  • Variance measures the spread or dispersion of data points within a dataset.
  • It quantifies the variability by calculating the deviations from the mean.
  • Population variance formula: Variance (σ²) = Σ((X – μ)²) / N
  • Sample variance formula: Variance (s²) = Σ((X – x̄)²) / (n – 1)
  • Variance helps understand data distribution, compare datasets, assess data reliability, and make informed decisions.
  • Standard deviation is the square root of the variance and provides a more intuitive measure of dispersion.
  • Variance is always non-negative and cannot be negative.

SuperMoney may receive compensation from some or all of the companies featured, and the order of results are influenced by advertising bids, with exception for mortgage and home lending related products. Learn more

Loading results ...

Andrew Latham

Andrew is the Content Director for SuperMoney, a Certified Financial Planner®, and a Certified Personal Finance Counselor. He loves to geek out on financial data and translate it into actionable insights everyone can understand. His work is often cited by major publications and institutions, such as Forbes, U.S. News, Fox Business, SFGate, Realtor, Deloitte, and Business Insider.

Share this post:

You might also like